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PRICELESS OR PRICEY? “ARBITRARY” CHOICES IN LOG-LINEAR
MODELS AND THE “ARBITRARY” COST OF HAVING CHILDREN

Briggs Depew!
Abstract

A popular fix when dealing with zeros in the dependent variable, y, is to add a scalar value, a,
within the log transformation, i.e. log (y + a). However, the choice of the scalar value is often
seemingly arbitrary. Using data from the Current Population Survey, I step-by-step walk through
an empirical investigation of how an additional child in the household affects childcare cost, and
I show that the choice of the arbitrary scalar value significantly affects the estimates of a log-linear
regression model. For those “special couples” who are mining through data from the Current
Population Survey to inform them on life decisions, they can estimate a model to justify any
decision by their choice of a. We demonstrate that the best practice may be to forgo the log-linear
regression model when dealing with zeros and turn to a Poisson regression.
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Introduction

Undergraduate courses in regression analysis, whether in the fields of statistics, economics,
or business analytics, among others, are designed to equip students with the necessary tools to
tackle real-world data. However, it is often the case that students encounter issues that they are
unprepared to handle. Online resources, like Stack Exchange or ChatGPT, are often helpful, but
these resources can lead a novice practitioner down an endless path of misunderstanding and
confusion. A common problem in applied work is encountering a dependent variable that includes
zeros, but the practitioner would like to estimate a log-linear regression. The purpose of this article
is to demonstrate how the choice of the “arbitrary” scalar in the popular fix of log(y + a) can lead
to results that are not arbitrary. As students are gearing towards the completion of college, some
may be wondering what is next in life and some may even be pondering marriage and children. By
walking through an example that regresses log childcare expenses on the number of young children
in the household, we demonstrate that the “cost” of an additional child will greatly depend on the
choice of the arbitrary parameter used to deal with zeros. In this setting, one can estimate a model
to justify any outcome by the choice of the value of a. This provides a clear and intuitive example
of how results can greatly be affected by choices that may seem arbitrary.

A quick survey of degree requirements for majors in economics, statistics, and business
analytics across institutions suggests that students often take one or two courses in linear regression
models but rarely, at least at the undergraduate level, do they take courses covering more advanced
non-linear regression models such as Probit and Logit, Poisson, Tobit, and other methods. As a
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result, it is challenging for novice practitioners to want to deviate from the known linear-regression
framework?>.

Log transformations are a common practice in empirical work. Justification for choosing
log-linear models often include: 1) ease of interpretation (the estimated parameter can be
interpreted as an elasticity or semi-elasticity), 2) logs can linearize a non-linear model such as a
Cobb-Douglas production function, 3) when skewed data is logged it becomes more normally
distributed, and 4) homoskedasticity is less likely to be violated when variables are logged. When
novice practitioners encounter the issue of having zeros in the dependent variable, they may turn
to ChatGPT for advice.

When we prompted ChatGPT (OpenAl, 2024) with the following, “How to estimate a log-
linear regression when there are zeros in the dependent variable?”, we received a reply that
provided five solutions. Four of the solutions suggested more complicated non-linear models
(Tobit Model, Zero-inflated Model, Poisson or Negative Binomial Model, and a two-step model
using a Logistic model in part with a log-linear regression). The first suggestion by ChatGPT was
to add a small constant to the log transformation: “One common approach is to add a small constant
(usually denoted as a "pseudo-count" or a "small shift") to the dependent variable before taking
the logarithm. This ensures that no value in the dependent variable is zero or negative, avoiding
the problem of undefined logarithms.” Adding a scalar to deal with the log of zero dates back at
least to Williams (1937) and despite the common practice of doing so, it has been shown that the
transformation will bias the Ordinary Least Squares (OLS) estimates (Flowerdew and Aitkin,
1982; King, 1988).

Recently, academic researchers have turned their attention to dealing with zeros in logged
data. Bellego, Benantia and Pape (2022) reviewed all articles published in the American Economic
Review between 2016 and 2020 to survey the extent of academic researchers deal with the log of
zero. They found that 40% of empirical papers used a log-specification and 36% of these articles
faced the problem of the log of zero. Bellego, Benantia and Pape (2022) found that it was most
common for authors to keep the zero observations but to also add a positive arbitrary value to the
dependent variable (48% of articles). In 35% of the articles, they found that authors used a Poisson-
type estimator, and in 15% of the articles the authors used the inverse hyperbolic sine
transformation. Finally, 31% of articles discarded the observations with zeros. Note, the choice of
modeling was not mutually exclusive since in 20% of articles, the authors compared more than
one method to assess the robustness of the modeling choice. The article by Chen and Roth (2023)
studies the popular fix of log (y + 1), and their main finding shows that the average treatment
effect for such transformations should not be interpreted as percentages, since they depend
arbitrarily on the units of the outcome when there is an extensive margin.

This article does not contribute to understanding the bias or the proper fix. Instead, we
provide data and a step-by-step example of how the choice of the scaling parameter, a, can affect
the results in a setting that is easily accessible to students. We also digress into the alternative
estimation practice of using a Poisson regression model. In the next section, we provide a brief
background on the log function of the log-linear regression equation with the addition of the scalar
value a. We demonstrate that adding the scalar value will bias the results. The following sections
present data from the Current Population Survey (CPS) 2010-2018 (Ruggles et al., 2024) and an
empirical investigation into household childcare expenditures using the log-linear model. We

2 The growth of data analytics there has been more emphasis placed on applying data tools, rather than a depth of
understanding and the causal pathways of black box models (Zhao et al., 2021).
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conclude by introducing the Poisson regression model, and we discuss the benefits and
interpretation of the model parameters.

Log Function and Zeros

The log function is the inverse function to the exponential function. If one considers the
equation bY = x, then the log of x to base b is equal to y. In other words, what power does one
need to raise b to obtain the value x. The log function compresses large values and expands small
values. As the input gets larger, the increase in the log value becomes smaller. For example, the
log of 10 is 2.30, the log of 100 is 4.61, and the log of 1,000 is 6.91, even though the numbers (10,
100, 1,000) are growing by factors of 10, the corresponding log values only grow by a constant
amount (2.30). This behavior compresses large values into a smaller range, and it is why logarithms
are often used to compare data that spans wide arrays, like income or population. For inputs close
to 1, the log function becomes very sensitive to small changes. For example, the difference between
the log of 1.01 and the log of 1.00 is larger than the difference between the log of 101 and 100. In
other words, logarithms expand small values, and in some sense magnify the relative differences
in smaller numbers.

The problem with taking the log of zero is that it is undefined. The solid line of Figure 1
displays the relationship between y and log (y).> A vertical asymptote exists at y = 0. As y
approaches zero from the right, log(y) approaches negative infinity. In Figure 1, we present three
transformations: log (y + 1), log (y +.1), and log (y + .01). Not surprisingly, the smaller the
value of the parameter of a, the closer the transformation matches log (y). However, in the applied
setting we show that it is not always ideal to let the parameter a equal a small positive value.

3 Throughout the paper, we use the natural log function in our empirical demonstrations.
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Figure 1: Log Function

logly) = log(y+1)
log(y+.1) — — — log(y+.01)

Teaching Points of Emphasis #1:
o The log function compresses large values and expands small values.
o The log of zero is undefined.
o The closer that y is to zero (limit as y approaches zero from the right), the smaller the
log(y) becomes to the point whereylirgk log (y) = —oo.

o The smaller the value of the parameter of a, the closer the transformation of

log(y + a) matches log (y).
o As we will later show, this does not justify using the smallest parameter possible.

Data

I now turn our attention to the data from the 2010-2018 Annual Social and Economic
Supplement (ASEC) of the CPS*. The CPS is conducted annually by the U.S. Census Bureau and
the Bureau of Labor Statistics and is designed to provide comprehensive data on income, poverty,
health insurance coverage, and a variety of demographic and economic characteristics of
households in the United States. The ASEC is typically conducted in March as a follow-up to the
regular monthly CPS. We limit the sample to years 2010-2018 for households with young children.
Particularly, an observation is a household with at least one child in the home and with the oldest
child being five years of age or younger. Column 1 of Table 1 presents the summary statistics for
the data used in the analysis. Average childcare expenses are $2,535 with a standard deviation of
$6,791. Childcare expenses are calculated at the Supplemental Poverty Measure (SPM) family unit
level. The SPM family unit includes people who live in the same housing unit and are related by

41n 2019, the Poverty Supplement of the ASEC implemented survey changes that affected income and relationship
variables, making poverty measurements before and after 2019 incomparable, including childcare expenses.
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birth, marriage, or adoption. It also includes cohabiting couples and their children and foster
children. The average number of children under 6 in the household is 1.45. The head of the
household has an average of 14.16 years of education, 72% of the households are married, the
average family income is $81,000, and the average age of the youngest child in the home is 1.84.
In total, we have 49,278 observations.

Table 1: Summary Statistics

Childcare Exp. Difference
All $=>0 $0 In Means
1) (2) 3) “4)
Childcare Exp. 2,534.57 6,999.46
(6,790.89)  (9,803.34)
Children in Household 1.45 1.45 1.45 -0.007
(0.62) (0.59) (0.63) (0.006)
Years of Education 14.16 14.86 13.76 -1.096%**
(2.79) (2.65) (2.78) (0.026)
Married 0.72 0.75 0.70 -0.041%**
(0.45) (0.44) (0.46) (0.004)
Family Income ($10,000) 8.11 10.36 6.83 -3.526%**
(9.11) (10.43) (7.99) (0.084)
Age of Youngest Child 1.84 2.02 1.73 -0.284%**
(1.54) (1.52) (1.54) (0.014)
Number of Observations 49,278 17,844 31,434

Data are from the CPS ASEC supplement. Means and standard deviations in
parentheses are presented in columns 1-3. Column 4 presents the difference in means
across columns 2 and 4 with the standard error in parenthesis.

*0.10 ** 0.05 and *** 0.01 denote significance levels.

The distribution of the variable of interest, Childcare Expenses, is displayed in Figure 2.
The top left panel presents the raw data. The top right panel displays the log transformation. As
displayed, this causes all the zeros in the data to be dropped. In the bottom row of the figure, I
display the distributions of the level and the log transformation when the value of one is added to
each observation. The two figures on the right show very different distributions of the dependent
variable. If the zeros are random, i.e. in our context, not correlated with number of children, then
it can be shown that discarding those observations will not affect the regression estimates.
However, in most cases the zeros are not random, and one needs to seriously consider how to move
forward. Furthermore, adding an arbitrary scalar will impact the distribution. For example, if one
was to instead transform the data by log(y+.000001), the spike in the distribution of the log
transformation would be much further to the left than the distribution displayed in the bottom right
figure.
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Figure 2: Distribution of Childcare Expenses
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Columns 2 and 3 of Table 1 present the summary statistics for households that have positive
childcare expenses and households that have zero childcare expenses. Column 4 reports the
difference in means between the two groups. Aside from the number of children in the household,
each of the means are statistically different from the other at the .01 significance level, suggesting
that the zeros in the data are not random.

Teaching Points of Emphasis #2:

o The non-linear nature of the log function helps to normalize skewed data. It reduces
positive skewness, meaning that if your data is heavily right-skewed (a long tail on the
right), the log transformation can help make the distribution more symmetrical.

o The log transformation only works for positive values since the logarithm is undefined for
zero or negative values.

e Adding an arbitrary scalar inside the transformation makes the zeros relevant but creates
a spike in the distribution. Since the log transformation expands for values close to zero,
adding a small constant, like 1078, within the transformation would increase the spacing
between the spike and the bell-shaped data displayed in the bottom right panel of Figure
1

o The minimum, mean, and max of the log of childcare expenses plus 1
(In (child care + 1)) is 0, 3.05, and 13.38, respectively.

o The minimum, mean, and max of the log of childcare expenses plus .00000001
(In (child care + 1078,)) is -18.42, -8.70, and 13.38, respectively.
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o Difference in means tests for observations that have zero childcare expenditures and
positive childcare expenditures suggest that the zeros in the data are not random.

Regression Model and Estimation
The regression model of interest is for household i is presented as,
log(y;) = a + Bnchild; + TX; + u;,

where y; represents household childcare expenditures, nchild is number of children in the
household, X is a vector of control variables, u is the unobserved term that accounts for all other
variables that factor into household childcare expenses. The parameter of interest, 5, is a semi-
elasticity that approximates the proportionate change in childcare expenses for a unit increase in
the number of children. A one unit increase in number of children is associated with a
(exp(B) — 1) x 100% change in childcare expenses. This can be approximated by § X 100% for
relatively small values of . I assume that the value of 8 is positive as each additional child in the
home increases childcare expenses, though for this paper the more interesting question is the
magnitude of the estimate.
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Table 2: Regression Results

In(y In(y +1) In(y+.01) In(y In(y Poisson
+ 1,000) +107%) +107%)
1) 2) 3) “4) (%) (6)

Panel A:

Simple

Linear Reg.

Children 0.079%** 0.126*** 0.148%** 0.179%%** 0.210** 0.295%**
(0.007) (0.030) (0.045) (0.069) (0.093) (0.014)

N 49,278 49,278 49,278 49,278 49,278 49,278

Panel B:

Mult. Linear

Reg.

Children 0.106*** 0.271%%* 0.373%%** 0.527%** 0.680%** 0.327%***
(0.007) (0.029) (0.045) (0.069) (0.092) (0.015)

Years of

Educ. 0.059%** 0.228%%** 0.342%** 0.513%** 0.684*** 0.156%**
(0.002) (0.007) (0.011) (0.017) (0.023) (0.004)

Married -0.031%%** -0.263%**  _(.442%** -0.711%%** -0.980%** (. ]75%**
(0.010) (0.042) (0.066) (0.101) (0.136) (0.024)

Family Inc. 0.023%** 0.074%%** 0.108%** 0.158%** 0.209%** 0.017%**
(0.001) (0.004) (0.006) (0.008) (0.011) (0.001)

Yng Child =

1 0.190*** 0.712%%** 1.062%%** 1.587%%* 2.112%%* 0.405%**
(0.011) (0.048) (0.074) (0.113) (0.153) (0.042)

Yng Child =

2 0.279%** 1.066*** 1.595%%** 2.387%** 3.180%*** 0.586%***
(0.012) (0.052) (0.080) (0.123) (0.165) (0.048)

Yng Child =

3 0.343%%** 1.401%%** 2.117%%* 3.190%** 4.263%** 0.623***
(0.014) (0.059) (0.091) (0.139) (0.187) (0.044)

Yng Child =

4 0.347%** 1.473%%* 2.237%* 3.38]%** 4.525%%* 0.627***
(0.015) (0.067) (0.104) (0.159) (0.215) (0.047)

Yng Child =

5 0.280%** 1.219%%** 1.855%%* 2.807%** 3.7759%** 0.511***
(0.016) (0.074) (0.115) (0.177) (0.239) (0.051)

State FE Yes Yes Yes Yes Yes Yes

N 49,278 49,278 49,278 49,278 49,278 49,278

Data are from the 2010-2018 CPS ASEC supplement. The table displays results from 12
regressions. Column 1-5 are from the log-linear OLS regressions. Column 6 is from the Poisson
regression. The results in panel B include controls for years of educations for the head of household,
marital status, total family income, fixed effects for the age of the youngest child, and state of
resident fixed effects. Robust standard errors are in parentheses.

*0.10 ** 0.05 and *** 0.01 denote significance levels.
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Panel A and B of Table 2 report results from the simple and multivariate regression models.
Columns 1-5 display results from the log-linear regression models and column 6 presents results
for the Poisson model (discussed later). For the log-linear models, the dependent variable is listed
in the heading of the table. For example, column 1 presents the results for the transformation of
the dependent variable as In(y + 1,000) where y is household expenditures on childcare. Column
2 reports results where the dependent variable is In(y + 1), and so on. Robust standard errors are
presented in parenthesis. As can be seen, each of the estimates is precisely estimated.

Teaching Points of Emphasis #3:

e [ can be interpreted as an approximate semi-elasticity: a one unit increase in number of
children is associated with a f X 100% change in childcare expenses. The exact semi-
elasticity is (exp(B) — 1) X 100%.

o The results from the simple regression model (Panel A) have a common pattern, the smaller
the value of the parameter, a, the larger the slope estimate. Depending on the value of a,
the results present an estimate as small as 0.08 to as large as 0.21. By using the formula
for the exact semi-elasticity, an additional child increases childcare expenses as little as
8.3 percent or as much as 23.4 percent.

e Small values of a, such as 10™8, cause a significant increase in the slope coefficient as it
transforms all the zero values to a value of -18.42 and therefore significantly expands the
left end of the distribution of the logged values.

o The pattern of the estimates for the parameter of interest are similar in the multivariate
regression model (Panel B) as those from the simple regression model (Panel A). The
multiple regression estimates show that all the slopes are affected by the choice of the
arbitrary value.

o From the multivariate regression model and using the exact semi-elasticity formula, an
additional child increases childcare expenses as little as 11.1 percent or as much as 97.4
percent, depending on the value of a.

o The results in columns 1-5 of Table 2 are not very informative because the choice of the
arbitrary value significantly affects the estimates.

o The above point can be further highlighted by setting a to an incredibly small number, like
a = 107190 45 such, the slope estimate on number of children increases to 1.16 and 5.38
for the simple and multiple regression models, respectively (not shown in the table). Or,
one could set a to a really large number, like the max in the sample. In this case, the slope
estimate on number of children decreases to 0.0013 and 0.0014 for the simple and multiple
regression models, respectively.

Poisson Regression Model

I now turn to fitting a Poisson regression model. Why might the Poisson be used instead of
the popular fix of adding a constant within the log transformation? The Poisson model can handle
all non-negative values of the dependent variable, i.e. y > 0. Also, the Poisson regression model
is easy to implement with statistical software. Gould (2011) cites two other reasons why the
Poisson has a significant advantage over log-linear regressions. First, “small nonzero values,
however, they arise, can be influential in log-linear regressions. 0.01, 0.0001, 0.0000001, and 0
may be close to each other, but in the logs they are -4.61, -9.21, -16.12, and -oo and thus not close
at all. Pretending that the values are close would be the same as pretending that that exp(4.61)=100,
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exp(9.21)=9,997, exp(16.12)=10,019,062, and exp(co)=co are close to each other. Poisson
regression understands that 0.01, 0.0001, 0.0000001, and 0O are indeed nearly equal.” Second,
“when estimating with Poisson, you do not have to remember to apply the exp(c?/2)
multiplicative adjustment to transform results from In(y) to .” Particularly, when working with a
log-linear regressions, to obtain the predicted values they must first obtain the predicted log values
from regressing In (y) on x, then exponentiate the predicted log values, and finally, multiply
those exponentiated values by exp(c2/2), where ¢ is the root mean squared error (standard error
of the regression).

The Poisson model takes the form of

yi = exp(Bo + Brx1; + Paxai + -+ Brxi + wy).
The assumption of the Poisson model is that the mean is equal to the variance, i.e. E(y) = var(y).
However, the estimated coefficients of the maximum-likelihood process do not depend on this
assumption. In other words, the estimates of the slope coefficients are unaffected if the assumption
holds or not. Rather, only the standard errors are affected by violating this assumption. However,
one can overcome this issue by simply calculating Huber-White robust standard errors.’

How does one interpret the estimates from the Poisson model? Exponentiating [
transforms the log effect into a rate ratio (also called a relative risk). The rate ratio interpretation
is as follows

e ePk > 1: A one-unit increase in x;, is associated with an increase in the expected count.

e ePk < 1: A one-unit increase in x; is associated with a decrease in the expected count.

o ePk = 1:No effect of x;, on the expected count.
The practical interpretation is calculated by a one unit increase in x; is associated with a
(eﬁk - 1) X 100% change in the outcome. In other words, if B, = .3, then e%3 ~ 1.35, and
therefore a one-unit increase in Xx;, is associated with an 35% increase in the outcome. Similarly,
if B, = —.8, then e~ %8 =~ 0.45, and therefore a one-unit increase in x;, is associated with a 65%
decrease in the outcome.

Referring to column 6 of Table 2, the 0.295 coefficient in the simple Poisson regression
model suggests that an additional child increases childcare expenses by 34.3%. The coefficient of
0.327 from the multivariate Poisson model in Panel B suggests a 38.7% increase in childcare
expenses from an additional child.

Teaching Points of Emphasis #4:

o The Poisson model can handle all non-negative values of the dependent variable, including
zeros.

e Small non-zero values in log-linear regressions: 0.01, 0.0001, 0.0000001, and 0 may be
close to each other, but in the logs they are -4.61, -9.21, -16.12, and -0 and thus not close
at all. Poisson regression understands that 0.01, 0.0001, 0.0000001, and 0 are nearly
equal.

o The interpretation of the coefficients of the Poisson model is calculated by a one unit
increase in xy, is associated with a (eﬁk — 1) X 100% change in the outcome.

o The results in column 6 of Table 2 suggest that an additional child increases household
childcare expenses by 34.3% or 38.7%, depending on the choice of the simple or
multivariate Poisson model.

5 White-Huber robust standard errors can be calculated in Stata using the vce(robust) option within the poisson
command.
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Inverse Hyperbolic Sine Transformation
In recent years, the inverse hyperbolic sine (IHS) transformation has been used as an
alternative to the log transformation, when dealing zeros in regression analysis. The THS

transformation is defined as IHS(y) = In (y + /y? + 1). This function is well defined for all real
numbers, including y = 0. Although this approach has been advocated as an alternative to the log
transformation, it is not without its own shortcomings. The inverse hyperbolic sine function is not
invariant to scaling. As such, regression results will depend on the units of measurement of the
transformed variable. Arbitrary choices regarding the units of measurement will significantly
affect the estimated marginal effects (Aihounton and Henningsen, 2021). In addition to the effect
of scaling, Chen and Roth (2022) caution estimating elasticities using the IHS transformation

because it combines intensive and extensive margin effects. For further discussion, see Chen and
Roth (2022).

Conclusion

Given the ease of interpretation, abilities to smooth data, and other practical benefits, it is
often appealing for researchers to apply log-linear regression models to data. Unfortunately, in
many instances the data includes many zeros. To get around these issues, many researchers apply
the popular fix of adding an arbitrarily chosen value to zero to allow for a log transformation, this
is despite the well-known problems with this approach. In this paper we demonstrate that the
choice of the arbitrary value can have a significant effect on the regression results. Rather than
previous approaches, which are largely theoretical, I make use of a real-world, easy-to-understand
example. I estimate a model that relates household childcare costs to the number of young children
in the home and show that the additional cost of child can be estimated to be quite small by adding
a relatively large arbitrary value or quite large by adding an arbitrary value close to zero. Overall,
the estimates can be changed to be as large or close to zero as the research may desire by choosing
an arbitrary value that works accordingly.

To get around this problem, I suggest that the best method is to introduce the Poisson model
to students as it is straightforward, and it allows practitioners to directly deal with zeros in their
data. Furthermore, I demonstrate how to interpret the Poisson model coefficients. While the
interpretation of the Poisson model is more difficult than the log-linear model, this difficulty is
outweighed by the clear benefits of the modified approach. In conclusion, the results on the
childcare cost of an additional child are not arbitrary. Rather, by using the Poisson regression
model, I find that an additional child that is age five and under increases childcare costs by
approximately 35% for the family unit.
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Appendix

Below is the Stata code for the analysis. Stata 18 SE was used for the analysis. The data can be
found here:
https://www.dropbox.com/scl/fi/qcq2hidvqcqvvbkvibuqqg/data.dta?rlkey=211tn88bcob8p7sty6sc
leofr&dl=0

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 5k 3k 3k %k >k 5k 5k 3k %k %k >k 5k 3k %k %k *k k %k k k

*E* Setup
3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k sk 5k 3k 3k %k %k k sk k sk sk ok k k k

use data.dta, clear

keep if pernum==1
keep if eldch<=5
keep if nchild>=1

gen cc=spmchxpns

gen ccl=cc+1l

gen Incc=In(cc)

gen Incc1000=In(cc+1000)
gen Inccl=In(cc+1)

gen InccO1=In(cc+.01)

gen Incc00001=In(cc+.00001)
gen Incc100m=In(cc+.00000001)
gen married=marst<=2
replace ftotval=ftotval/10000
forvalues i=0(1)5{

gen yn'i'=yngch=="j"

}

gen yred=.

replace yred=0 if educ==2
replace yred=1 if educ==11
replace yred=2 if educ==12
replace yred=2.5 if educ==10
replace yred=3 if educ==13
replace yred=4 if educ==14
replace yred=5 if educ==21
replace yred=5.5 if educ==20
replace yred=6 if educ==22
replace yred=7 if educ==31
replace yred=7.5 if educ==30
replace yred=8 if educ==32
replace yred=9 if educ==40
replace yred=10 if educ==50
replace yred=11 if educ==60
replace yred=11 if educ==71
replace yred=11 if educ==72
replace yred=12 if educ==73
replace yred=13 if educ==80


https://www.dropbox.com/scl/fi/qcq2hidvqcqvvbkvi6uqq/data.dta?rlkey=211tn88bcob8p7sty6sc1eofr&dl=0
https://www.dropbox.com/scl/fi/qcq2hidvqcqvvbkvi6uqq/data.dta?rlkey=211tn88bcob8p7sty6sc1eofr&dl=0
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replace yred=13 if educ==81
replace yred=14 if educ==90
replace yred=14 if educ==91
replace yred=14 if educ==92
replace yred=15 if educ==100
replace yred=16 if educ==110
replace yred=16 if educ==111
replace yred=17 if educ==121
replace yred=18 if educ==122
replace yred=18 if educ==123
replace yred=19 if educ==124
replace yred=21 if educ==125

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 5k 3k 3k %k >k 5k 5k 3k sk 3k >k 5k 3k %k %k %k k %k %k k

*** Figure 2: Log Function

3k 3k sk sk ok sk sk 3k sk sk sk sk sk ok ok 3k 3k sk sk sk ok ok ok 3k 3k sk sk sk sk ok k ki k k
preserve

clear

set obs 2000

genx=_n

replace x=x/1000

gen y=In(x)

gen yl=In(x+1)

gen ydotl=In(x+.1)

gen ydotzl=In(x+.01)

label vary "log(y)"

label var y1 "log(y+1)"

label var ydot1 "log(y+.1)"

label var ydotz1 "log(y+.01)"

twoway (line y x) (line y1 x) (line ydotl x ) (line ydotz1 x)
restore

ok ok ok ok ok ok K oK ok ok ok ok ok oK oK ok ok ok o K oK ok ok ok ok K ok ok ok k ok K

*** Figure 2: Histograms

sk 3k sk sk 3k sk 3k sk 3k sk sk sk sk ok sk ok sk sk sk sk ok sk ok sk ok sk sk ok sk ok sk ok k ok
hist cc,name(cc,replace)

hist cc1,name(ccl,replace)

hist Incc,name(Incc,replace)

hist Incc1,name(Inccl,replace)

sk 3k sk sk 3k sk 3k sk 3k sk sk sk sk sk sk 3k sk sk sk sk sk sk sk sk ok sk sk sk sk ok kosk sk k.

*** Table 1: Summary Statistics

3k 3k 3k sk ok 3k 3k 3k sk 3k sk sk sk ok ok 3k 3k sk sk sk ok ok ok 3k sk sk sk sk skosk ok ki k k

sum cc nchild yred married ftotval yngch

sum cc nchild yred married ftotval yngch if cc!=0

sum cc nchild yred married ftotval yngch if cc==

capture gen z=cc==

foreach var of varlist cc nchild yred married ftotval yngch {
Xxi: reg ‘var' z

}

ok K ok ok ok ok K oK oK ok ok ko K oK ok sk ok ok K R Kk kR K Rk ok ok ok K
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*** Table 2: Regression Results
3k 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k ok 3k ok ok %k 3k sk sk sk ok sk sk sk k sk sk sk sksk sk k k k

foreach var of varlist Incc1000 Inccl InccO1 Incc00001 Incc100m {

reg ‘var' nchild,vce(robust )
reg ‘var' yred married ftotval ynl1-yn5 nchild i.statefip ,vce(robust )
}
poisson cc nchild,vce(robust )
poisson cc yred married ftotval ynl-yn5 nchild i.statefip ,vce(robust )
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*** Additional Results
3k 3k 3k 3k 3k >k 3k 5k 5k 3k %k >k >k sk 5k 5k 5k >k >k >k sk ok ok ok %k %k sk sk sk sk ok kkk

gen Inccsmall=In(cc+1.000e-100)

sum cc,d

gen Inccbig=In(cc+r(max))
reg Inccsmall nchild,vce(robust )
reg Inccsmall yred married ftotval ynl1-yn5 nchild i.statefip ,vce(robust)
reg Inccbig nchild,vce(robust )

reg Inccbig yred married ftotval yn1-yn5 nchild i.statefip ,vce(robust )



