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Abstract 

 

Teaching students to conduct marginal analysis before they have studied calculus is a major 

challenge in introductory economics courses.  This paper offers a simple algebraic approach to 

optimization that allows students to extract explicit marginal revenue and marginal cost functions 

from quadratic total revenue and total cost functions.  For first- or second-degree polynomials, 

the algebraic results are identical to those derived from differential calculus.  The technique 

offers students a deeper understanding of the profit maximization process than can be obtained 

from spreadsheets and other conventional teaching methods. The resulting functions can be used 

to develop related insights regarding issues such as deadweight loss and competitive market 

adjustments.  Numerical examples of monopoly and perfect competition are used to illustrate the 

algebraic optimization technique. 
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Introduction 

Marginal analysis is clearly among the most central notions in the entire canon of 

economics.  Indeed, Saunders (1994) identified marginal analysis as one of the seven most 

important economic concepts for developing critical thinking and decision-making skills, and 

Karunaratne et al. (2016) list it as one of the ten threshold concepts in the discipline.
2
  The topic 

receives a fairly thorough treatment in intermediate microeconomics courses, where students are 

assumed to be familiar with differential calculus (Carbaugh and Prante, 2011), but most college 

students do not major in economics, and thus never study this subject at the intermediate level.
3
   

                                                 
1
  Professor of Economics and Dean of the College of Business Administration, University of Detroit Mercy, 

4001 W. McNichols Road, Detroit, Michigan 48221.  I thank Rod Raehsler, Doris Geide-Stevenson, and Lester 

Hadsell for helpful comments on an earlier draft; any errors are my own. 

 
2
  Threshold concepts are those that lead to a transformed way of thinking.  The economic threshold concepts 

listed by Karunaratne, et al. (2016) include: economic models, opportunity cost, marginal analysis, equilibrium and 

disequilibrium, market structures and interactions, elasticity, efficiency, comparative advantage, real versus nominal 

values, and cumulative causation.  Saunders’ (1994) list of the most important concepts includes opportunity cost, 

marginal analysis, independence, exchange, productivity, money, and markets and prices.   

 
3
 In reviewing the transcripts of more than 8,100 college students, Bosshardt and Watts (2008) found that nearly 60 

percent had completed at least one economics course, but the average was only 1.5 courses, and only those majoring 

in economics or business averaged two or more courses.  Mumford and Ohland (2011) and Bosshardt and Walstad 

(2017) obtained similar results.  Thus, Perumal (2012, p. 3) notes, “The majority of such students are non-economics 

majors who often study no more than one or two compulsory economic principles courses.”   
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 Given the importance of marginal analysis and the fact that most individuals receive no 

more than a principles-level introduction to this concept, it is essential to present the topic as 

thoroughly, effectively, and efficiently as possible in basic courses.  Moreover, a rewarding 

experience at the principles level can encourage students to pursue the economics major.  Yet 

introductory textbooks are challenged to present optimization methods to students whose 

assumed level of mathematical competence is restricted to algebra and geometry.  Most resort to 

rather unsatisfactory approaches that often lack realism, do not fully utilize the mathematical 

backgrounds they assume students have, and fail to engage students in actually conducting 

marginal analysis.  Thus, while noting that “marginal analysis is at the heart of economics,” 

Asano (2006, p. 46) observes, “the majority of first year students, however, seem to struggle in 

applying it to a firm’s profit maximization problem.”  

 The present note offers an alternative approach to the study of marginal analysis in the 

context of profit maximization.  The method is quite simple—relying exclusively on algebra—

and yet exceptionally rigorous. For first- or second-degree polynomial functions, it yields results 

identical to those obtained from the application of derivatives.  The following section describes 

the problem to be addressed and the difficulties inherent in the customary approaches.  The 

algebraic optimization method is then presented, extended, and illustrated with some brief 

numerical examples. The article ends with a short conclusion. 

 

Existing Approaches to Profit Maximization 

Consider the fundamental problem of maximizing a firm’s profit, given a demand curve 

and a total cost function.  To keep the analysis as general as possible, we will not assume that the 

firm is necessarily a competitive price-taker; rather, we can specify a linear demand curve as  

 

bQaP                   (1) 

 

where Q denotes the firm’s output, P denotes price, and a and b are demand parameters such that 

a > 0 and b ≥ 0.  (If the firm is assumed to be a perfectly competitive price-taker, then b = 0 and 

the price is constant at P = a regardless of the firm’s output level).  Total revenue (TR) is easily 

obtained as the multiplicative product of price and quantity:  

 
2)( bQaQQTR  .                (2) 

 

Although most principles texts present total cost as a schedule of numerical values, a 

number of textbooks and other pedagogical materials specify a total cost function.  We follow 

examples in Cowen and Tabbarok (2013), Stengel (2011), Hirschey (2006), Cheung (2005) and 

others in assuming the firm has a quadratic total cost (TC) function.
4
  Let  

 
2)( wQvQfQTC                 (3) 

 

where f denotes fixed cost, and v and w are parameters of the variable cost portion of TC.  To 

ensure that total cost and marginal cost are both increasing with output, we may for simplicity 

                                                 
4
  Davis (2014) finds that, even at the intermediate level, most cost functions are quadratic. 
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assume f  > 0, v ≥ 0 and w > 0. 
5
  Profit () is just the difference between total revenue and total 

cost: (Q) = TR(Q) – TC(Q).   
 Introductory textbooks (such as Krugman and Wells 2009, Mankiw 2012, or Brue and 

McConnell 2009) rightly explain that marginal cost (MC) is the change in TC from producing an 

extra unit of output, and marginal revenue (MR) is the change in TR from selling an extra unit; at 

the profit-maximizing output, MC equals MR, so that producing and selling one unit more or less 

would reduce profit.  Yet the MR and MC functions are typically asserted to be unobtainable in 

the absence of differential calculus.  Thus, second-best approaches are generally adopted. 

 A common practice asks students to construct tables, or spreadsheets, showing values of 

P, TR, TC, MR, MC, and  at various levels of Q.  Such exercises demonstrate numerically that, 
at the maximum profit, MR = MC.  This is a workable, but rather awkward and time-consuming 

trial-and-error approach.  The values of Q are frequently limited to single or low-double digits, 

so that MR and MC can be calculated on the basis of single-unit changes; this restricts the 

analysis to extremely low output values, and implicitly assumes that output is a discrete, rather 

than continuous, variable.  In some cases where discrete values are imposed, MR slightly exceeds 

MC at the optimum, without an explanation of how to handle continuous variables.  Other 

exercises direct students to use software, requiring them to first acquire the necessary computer 

skills, to construct spreadsheets or graph solutions (Larson and Swofford, 2015).
6
   Perhaps most 

worrisome, spreadsheets allow students to “cheat” by using TR and TC to find the highest profit 

first, and only afterwards verify that MR = MC at the maximum profit, rather than using MR and 

MC to find the optimum—essentially converting marginal analysis into marginal confirmation.
7
   

 Yet other approaches involve rather opaque methods.  Some textbooks, such as those by 

Stengel (2011) and Hirschey (2006), simply give students the MR and MC functions directly, 

without showing the derivations, and ask them to equate these functions to solve for the optimal 

Q.  Still others, including Cowen and Tabbarok (2013), employ software such as Excel macros or 

Solver, requiring even greater computer skills than those needed for spreadsheets.  Such methods 

avoid the tedious computations of the spreadsheet, but by hiding the derivations of MR and MC, 

they represent “black boxes” (Larson and Swofford, 2015).  In effect, these methods signal to 

principles students that marginal analysis is extremely important, but unless and until they study 

                                                 
5
  If v = 0, the total cost function in (3) can be obtained from the Cobb-Douglas production function 

LKQ  where L is labor and capital (K) is fixed at K = 1 in the short term, so that 2QL  .   Then with w as the 

wage rate and f as the price of capital, 2wQfwLfKTC  . 

 
6
  Some research suggests that purely graphical presentations may be confusing and even counterproductive 

to learning for some students (Cohn, et al., 2001; Zetland, et al., 2010).   

 
7
  Other issues may also arise with spreadsheets.  Depending upon the structure of the exercise, the orders of 

magnitude that the price and quantity should be are not obvious to students.  Consequently, obtaining appropriate 

values can involve substantial guesswork, unless hints are given about the range and intervals of Q to insert into the 

table.  Hirschey’s (2006, p. 40) exercises, for example, provide hints such as, “Establish a range for Q from 0 to 

10,000 in increments of 1,000.”  Even then, extensive computation may be needed. Finding values for six variables 

at ten levels of output requires 60 calculations. In texts that dispense with TR and TC functions entirely, the 

exercises typically begin with some values already inserted in the table and direct students to deduce the remaining 

entries.   
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calculus and intermediate microeconomics, they will not fully comprehend how to actually 

conduct profit maximization.
8
  

 As an alternative to these pedagogies, the algebraic optimization shown below is an 

exceptionally simple technique that works with any first- or second-degree polynomials such as 

equations (2) and (3).  It is neither a trial-and-error approach nor a black box. It utilizes the basic 

algebraic knowledge that principles students are assumed to have, giving students the satisfaction 

of solving such problems analytically.
9
  We first present the analysis and extensions at a general 

level, then offer some numerical examples for classroom use. 

 

 

Algebraic Optimization  

Recall the total revenue function in (2) above.  The marginal revenue of the last unit sold 

can be defined as the total revenue at Q units minus the total revenue at Q – 1 units.  Likewise, 

starting from any level of Q, the marginal revenue from selling one extra unit is the total revenue 

at Q + 1 units minus the total revenue at Q units.  Let us consider the additional revenue from 

those two units: one more and one less than Q, and denote that as 2MR.  Then 

 

)1()1(2  QTRQTRMR ,               (4) 

 

or, after substituting from equation (2),  

 

])1()1([])1()1([2 22  QbQaQbQaMR .           (5)  

 

Many of the terms in (4) cancel, and elementary algebra reduces this expression to  

 

bQaMR 422  .                (6) 

 

Because equation (6) represents the additional revenue from two units of output, we can divide it 

by 2 to obtain the marginal revenue function: 

 

bQaMR 2 .                (7) 

 

Notice, importantly, that this is exactly the same marginal revenue function that we would derive 

by applying differential calculus to the TR function in (2).  One advantage of this approach is 

readily apparent: by explicitly obtaining the MR function in (7) and comparing it to the demand 

                                                 
8
  For example, although Stengel (2011, p. 4) claims “an understanding of basic algebra will suffice,” he later 

notes (Stengel, 2011, p. 20), “How to apply differential calculus is beyond the scope of this text; however, here are 

the functions that can be derived from the revenue, cost, and profit functions” and proceeds to write out the MR and 

MC functions needed to find the optimal output.  A few authors, such as Heckner and Kretschmer (2008) and 

Doviak (2005), attempt to teach enough calculus in the principles course to have students differentiate the TR and 

TC functions. 

 
9
  Niven (1981) and Cadeddu and Lai (2015) have offered other techniques for finding maxima and minima 

without calculus, but their methods have not been applied to economic problems, and generally require mathematics 

that are well beyond basic algebra. 
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function in (1), students immediately see that the MR curve is exactly twice as steep as the linear 

demand curve—an insight that is not quite as obvious from spreadsheet calculations.
10

  

 Similarly, the additional cost of the two unit difference between Q + 1 and Q – 1 can be 

expressed as )1()1(2  QTCQTCMC ; or, after substitution from equation (3),  

 

])1()1([])1()1([2 22  QwQvfQwQvfMC .          (8) 

 

Again, algebraic rearrangement simplifies this expression to  

 

 wQvMC 422  ,                 (9) 

 

and dividing by 2 gives the marginal cost function as 

 

 wQvMC 2 ,               (10) 

 

exactly the same result that would be obtained from (3) by taking a first derivative.   

 Using equations (7) and (10), the optimal level of output, 0Q , can be found by setting MR 

= MC.  This yields
 11

 

 

)(2
0

wb

va
Q




 .              (11) 

 

The optimal price to charge, 0P , is then found by substituting (11) into (1), while total revenue 

and total cost are obtained by substituting (11) into (2) and (3), respectively.  Thus, this 

technique achieves a precise optimum from first principles without the use of differential 

calculus.  The relationship between algebraic and differential optimization, including an 

algebraic determination of the second-order condition, is provided in the Appendix. 

 

Extensions 

The derivation of linear MR and MC curves also allows some rigor to be added to the 

customary lessons regarding market structure and costs that accompany profit maximization.  

These might be reserved as optional exercises, perhaps for an honors section of the course.  For 

example, students are typically taught that a monopoly creates a deadweight loss, or inefficiency, 

by pricing above marginal cost.  In the current framework, we can find the output level at which 

the MC curve intersects the demand curve by using (10) and (1) to set bQawQv  2 ; 

designate that level of output as  

 

                                                 
10

  Alternatively, we could define QQQTRQQTRMR  2/)]()([  with any 0Q  to obtain the 

same outcome. 1Q  is used for simplicity; another convenient choice would be 2/1Q . 

 
11

  Equivalently, as shown in the Appendix, we could subtract (3) from (2) to establish the profit function, then 

apply algebraic optimization to obtain marginal profit, and set the latter expression equal to zero in order to obtain 

(11). 
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wb

va
Q

2
1




 .                 (12) 

 

Because the demand and marginal cost curves are both linear, students can use the basic 

geometry of Figure 1 (where D indicates the demand curve) to measure the deadweight loss 

(DWL) as the area of the triangle between the demand and marginal cost curves, from 0Q to 
1Q .   

 

 ])][()[(2/1( 0100 QQQMCPDWL  ,           (13) 

 

as in the first example below.  Consumer surplus can be measured in a similar manner.  

Another familiar lesson is that average total cost (ATC) declines when MC < ATC, and 

rises when MC > ATC, so that MC crosses ATC at the minimum point of ATC.  The level of 

output at which this occurs can now easily be quantified.  Dividing (3) by Q gives ATC as 

 

wQvQfATC  )/(              (14) 

 

and setting MC = ATC from (10) and (14), respectively, gives wQQf / , or  

 

wfQL /                (15) 

 

where the subscript L denotes the lowest average total cost.
12

  (If P = MC < ATC, the firm suffers 

a loss, but remains in operation if a > v. Note from (11) that the shutdown point occurs at a ≤ v. 

A third lesson enabled by having an explicit MC function is that the market supply curve 

is the horizontal summation of individual supply curves, and an individual firm’s supply curve is 

the portion of the MC curve that lies above average variable cost.  In the second example below, 

we show how this can be used to illustrate the effects of market entry or exit. 

 This method of conducting marginal analysis is fully transparent and can be taught easily 

and quickly, especially with numerical examples of the type shown below.  It allows students the 

satisfaction of deriving a solution to the profit maximization problem analytically, rather than via 

trial-and-error or being given MR and MC functions that have been obliquely derived elsewhere.  

And importantly, it promotes realism by facilitating exercises in which the optimal output and 

price need not be small, round, or even whole, numbers.  Indeed, by selecting appropriate values 

for a, b, f, v, and w, instructors can readily construct exercises with any desired outcomes.
13

   We 

provide two examples below. 

 

 

                                                 
12

  A limitation of using a quadratic total cost function is that average variable cost is not convex, as depicted 

in many texts; such a curve requires a cubic TC function.  As Davis (2014, p. 184) notes however, “Many cubic 

functions are not plausible representations of a firm’s costs.” 

 
13

  In particular, cases in which  ≥(<) 0 can be constructed by selecting parameter values such that (a – v)
2
 

≥(<) 4(b + w)f .  Classroom and homework exercises can be simplified by setting v = 0, and competitive firms can be 

assumed to face infinitely elastic demand curves such that b = 0. 
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Figure 1.  Monopoly Output, Price, and Deadweight Loss 

 

 

Numerical Example: Monopoly  

Consider the standard profit maximization problem assuming that a firm operating as a 

monopoly faces a demand function given by QP 01.0100  , so that total revenue is  

 
201.0100 QQTR  .              (16) 

 

Let the total cost function be given by 

 
201.04800,2 QQTC  .             (17) 

 

 Suppose first that students attempt to find the optimum using a spreadsheet—that is, by 

calculating TR and TC at various levels of Q.  Using an iterative, trial-and-error procedure, they 

eventually arrive at the output level that yields the maximum profit, but only after extensive 

Q0 Q1 Quantity 
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MC(Q0) 
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calculations.  Alternatively, they might resort to the black box of mathematical software.  Neither 

practice ensures that they learn to obtain the solution by equating MR with MC.  

  A more efficient, transparent, and less frustrating, approach applies the analytic 

technique above.  Using only algebra, students can readily calculate MR and MC as follows.  

 

])1(01.0)1(100[])1(01.0)1(100[2 22  QQQQMR  

         Q04.0200  .              (18) 

 

QMR 02.0100  .              (19) 

 

])1(01.0)1(4800,2[])1(01.0)1(4800,2[2 22  QQQQMC  

         Q04.08 .              (20) 

 

QMC 02.04  .              (21) 

 

Finally, setting MR = MC yields the solution 400,20 Q .  Substituting this into the 

demand curve reveals that the optimal price to charge is 760 P , and from TR and TC it is easy 

to calculate the maximum profit, 400,1120  .  If a student now chooses to use a spreadsheet to 

check the result, (s)he can immediately select values for Q near 2,400 and thus quickly confirm 

that profit is indeed maximized at that level of output, with MR = MC = 52.  Note that in contrast 

to the more traditional approach, the solution is determined from the equivalence of MR and MC, 

and only confirmed through spreadsheet computations, rather than vice versa. 

As suggested earlier, this example can be extended to calculate the deadweight loss from 

monopoly, by first finding the quantity of output at which the marginal cost curve intersects the 

demand curve.  Setting QQ 01.010002.04   gives 200,31 Q .  Then the deadweight loss 

from monopoly is the triangular area 600,9)400,2200,3)(5276)(2/1(  . 

 

Numerical Example: Perfect Competition  

As a second example, consider a perfectly competitive firm confronting an initial market 

equilibrium price of P = 60, whose total revenue function is therefore TR = 60Q.  Applying the 

technique above, students can calculate  

 

60
2

)1(60)1(60





QQ
MR             (22) 

 

which demonstrates that, for a perfectly competitive firm, the product price is the marginal 

revenue, so the optimality condition MR = MC becomes P = MC.  Let the firm’s total cost 

function be 
2100 QTC   where for convenience v = 0 and w = 1.  Using algebra, the marginal 

cost function is found as 

 

Q
QQ

MC 2
2

])1(100[])1(100[ 22




 .          (23) 
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Setting P = MC yields an optimum at 300 Q ; then TR = 1,800 and TC = 1,000 so  = 800.   

Such an example can also be used to illustrate the effects of market entry (or exit).  

Assuming that new (and identical) firms enter the market and erode profits, students can 

determine both the new market price and the output that each firm will produce, by using the 

following logic.  Profit is eliminated when TR = TC, or equivalently, when P = ATC.   Because 

the competitive firm optimizes where P = MC, the firm optimizes with zero profit when P = ATC 

= MC.  In this example, average total cost is 

 

QQATC  )/100( .              (24) 

 

Setting (24) equal to (23) yields 10LQ .  At 10 units of output, ATC = MC = P = 20.  (Students 

can easily check that ATC is higher at any other level of output).  Thus, in the absence of barriers 

to entry, new firms will enter this initially profitable market, increasing the market supply, until 

the equilibrium price falls to P = 20.  Each firm will then experience TR = 200, TC = 200, and  
= 0 in the long run.

14
  

 With additional details, this example can be extended even further.  Assume that there are 

initially 40 firms in the market. Let the market demand be given by P = 120 – 0.05q, or q = 2400 

– 20P, where market output q is the sum of output from n identical firms, so q = nQ.  Then with 

each firm setting P = 2Q or Q = P/2, the market supply from the 40 firms collectively was q = 

20P.  Setting market demand equal to market supply confirms that the initial equilibrium price is 

60 and the equilibrium output from 40 firms is 1,200.  When new firms enter the market, the 

price drops to P = 20 and each firm produces only Q = 10 units.  The demand curve reveals that 

with P = 20, a total of q = 2,000 units are sold; thus, the final number of firms in the market can 

now be found as n = q/Q = 200.  The market supply curve—the horizontal summation of 

individual firms’ supply curves—has become q = 100 P. Students can use the market supply and 

demand curves to verify that P = 20 is indeed the new equilibrium price.  Of course, the example 

can easily be reconfigured (with f  > 900) to illustrate market exit following initial losses.   

 As these examples suggest, enabling students to extract explicit MC and MR functions 

from TC and TR functions gives instructors the option to introduce as much or as little rigor into 

the course as they desire. Exercises may be as elaborate or elementary as needed.  Indeed, output 

can be a continuous variable in fractional units at the optimum without increasing the complexity 

of student calculations.
15

 

 

Conclusion  

Principles-level economics students are expected to be familiar with algebra and 

geometry, yet in scrupulously avoiding calculus, introductory textbooks almost invariably resort 

to the simple arithmetic of spreadsheets to demonstrate profit maximization.  That approach 

                                                 
14

  Textbooks often assert that all costs are variable in the long run, but as pointed out by Wang and Yang 

(2001), that is a misrepresentation caused by conflating fixed costs with sunk costs.  Thus, our example follows 

Cheung (2005) in assuming that fixed cost persists as a component of total cost during the entry and exit process 

leading to the long run equilibrium. 

 
15

  It should be emphasized that this technique is restricted to first- and second-degree polynomials, and should 

not be applied to other functional forms. 
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misses an opportunity to capitalize on the math skills that students already possess, and permits 

them to find the optimum through trial-and-error without actually using marginal analysis.   

The main stumbling block is the derivation of marginal revenue and marginal cost 

functions, typically delayed until intermediate courses where optimization is taught with 

derivatives.  Designed for measuring the effects of infinitesimal changes in variables, differential 

calculus is an ideal instrument for conducting marginal analysis, because it efficiently yields 

precise solutions to maximization and minimization problems.  Certainly, algebra is not a perfect 

substitute for calculus, but applying algebra to quadratic revenue and cost functions can bring 

much of that efficiency, precision, and power to an introductory course. Working through profit 

maximization exercises like those above strengthens students’ problem-solving ability and 

ensures that they perceive marginal analysis as the centerpiece of optimization, rather than as an 

afterthought.  Thus, algebraic optimization can enrich students’ understanding of one of the key 

concepts in economics.  By facilitating examples in which output can be a continuous variable of 

any magnitude, this approach brings greater realism to the course.  Greater realism, in turn, can 

both attract more students and lead to improved learning (Mearman, et al., 2014). 

 Naturally, because students differ in their responses to various teaching methods, no 

single technique is necessarily superior to all others.  Tables or diagrams may be favored by 

some students, while algebraic optimization will be appreciated more by others, especially those 

with better algebraic skills.  Likewise, some instructors may prefer to use conventional methods 

for teaching marginal analysis, but others will find it advantageous to add algebraic optimization 

to their pedagogical toolkits, especially because it need not replace traditional tools entirely. 

Algebraic optimization can easily be used in conjunction with spreadsheets and graphs.   
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Appendix: Algebraic and Differential Optimization 

This appendix elucidates the relationship between differential and algebraic optimization.  

Differential calculus measures the rate of change in a function for an infinitesimal increment to 

its argument.  For any function g(x), a right-hand side derivative can be expressed as 
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and a left-hand side derivative is 
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The algebraic optimization technique is analogous to averaging the right-hand side and left-hand 

side derivatives, but with  = 1 rather than vanishing.  For any first-degree or second degree 

polynomial, this yields the same result as a derivative.  Notice that for any 2)( xxg  ,  
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As an application, consider the total profit function obtained by subtracting (3) from (2): 
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Applying algebraic optimization, we get the marginal profit function as follows: 

 

2

)]1()1([

2

)]1()([)]()1([
)(







QQQQQQ
QM


    

QwbvaQM )(2)(  .            (A5) 

 

This is identical to the first derivative of (A4), and setting M(Q) = 0 yields the optimum in (11). 

Both Asano (2006) and Carbaugh and Prante (2011) have emphasized the need, at least in 

intermediate and advanced microeconomics courses, for checking the second-order condition to 

ensure that 0Q represents a maximum rather than a minimum.  Although it need not be taught at 

the principles level, it may be useful for instructors to recognize that algebraic optimization can 

also be used to check the second-order condition.  By analogy to a second derivative, the 

“marginal marginal” profit function (for lack of a better phrase), can be written as 
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After substitution from (A5), this becomes 
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Rearranging gives the same second-order condition that would be obtained by using calculus: 
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